Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(18): 32752-32760, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242330

RESUMEN

Thin-film lithium niobate (TFLN) is an emerging platform for compact, low-power nonlinear-optical devices, and has been used extensively for near-infrared frequency conversion. Recent work has extended these devices to mid-infrared wavelengths, where broadly tunable sources may be used for chemical sensing. To this end, we demonstrate efficient and broadband difference frequency generation between a fixed 1-µm pump and a tunable telecom source in uniformly-poled TFLN-on-sapphire by harnessing the dispersion-engineering available in tightly-confining waveguides. We show a simultaneous 1-2 order-of-magnitude improvement in conversion efficiency and ∼5-fold enhancement of operating bandwidth for mid-infrared generation when compared to equal-length conventional lithium niobate waveguides. We also examine the effects of mid-infrared loss from surface-adsorbed water on the performance of these devices.

2.
Phys Rev Lett ; 124(24): 240503, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32639814

RESUMEN

We propose a deterministic, measurement-free implementation of a cubic phase gate for continuous-variable quantum information processing. In our scheme, the applications of displacement and squeezing operations allow us to engineer the effective evolution of the quantum state propagating through an optical Kerr nonlinearity. Under appropriate conditions, we show that the input state evolves according to a cubic phase Hamiltonian, and we find that the cubic phase gate error decreases inverse quartically with the amount of quadrature squeezing, even in the presence of linear loss. We also show how our scheme can be adapted to deterministically generate a nonclassical approximate cubic phase state with high fidelity using a ratio of native nonlinearity to linear loss of only 10^{-4}, indicating that our approach may be experimentally viable in the near term even on all-optical platforms, e.g., using quantum solitons in pulsed nonlinear nanophotonics.

3.
Sci Adv ; 5(5): eaau0823, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31139743

RESUMEN

Physical annealing systems provide heuristic approaches to solving combinatorial optimization problems. Here, we benchmark two types of annealing machines-a quantum annealer built by D-Wave Systems and measurement-feedback coherent Ising machines (CIMs) based on optical parametric oscillators-on two problem classes, the Sherrington-Kirkpatrick (SK) model and MAX-CUT. The D-Wave quantum annealer outperforms the CIMs on MAX-CUT on cubic graphs. On denser problems, however, we observe an exponential penalty for the quantum annealer [exp(-αDW N 2)] relative to CIMs [exp(-αCIM N)] for fixed anneal times, both on the SK model and on 50% edge density MAX-CUT. This leads to a several orders of magnitude time-to-solution difference for instances with over 50 vertices. An optimal-annealing time analysis is also consistent with a substantial projected performance difference. The difference in performance between the sparsely connected D-Wave machine and the fully-connected CIMs provides strong experimental support for efforts to increase the connectivity of quantum annealers.

4.
Biophys J ; 114(7): 1539-1550, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642025

RESUMEN

Few techniques are suited to probe the structure and dynamics of molecular complexes at the mesoscale level (∼100-1000 nm). We have developed a single-molecule technique that uses tracking fluorescence correlation spectroscopy (tFCS) to probe the conformation and dynamics of mesoscale molecular assemblies. tFCS measures the distance fluctuations between two fluorescently labeled sites within an untethered, freely diffusing biomolecule. To achieve subdiffraction spatial resolution, we developed a feedback scheme that allows us to maintain the molecule at an optimal position within the laser intensity gradient for fluorescence correlation spectroscopy. We characterized tFCS spatial sensitivity by measuring the Brownian end-to-end dynamics of DNA molecules as short as 1000 bp. We demonstrate that tFCS detects changes in the compaction of reconstituted nucleosome arrays and can assay transient protein-mediated interactions between distant sites in an individual DNA molecule. Our measurements highlight the applicability of tFCS to a wide variety of biochemical processes involving mesoscale conformational dynamics.


Asunto(s)
Difusión , Espectrometría de Fluorescencia , ADN/química , ADN/metabolismo , Conformación de Ácido Nucleico
5.
J Am Chem Soc ; 139(51): 18576-18589, 2017 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-29185740

RESUMEN

Decades of study of the RNA folding problem have revealed that diverse and complex structured RNAs are built from a common set of recurring structural motifs, leading to the perspective that a generalizable model of RNA folding may be developed from understanding of the folding properties of individual structural motifs. We used single-molecule fluorescence to dissect the kinetic and thermodynamic properties of a set of variants of a common tertiary structural motif, the tetraloop/tetraloop-receptor (TL/TLR). Our results revealed a multistep TL/TLR folding pathway in which preorganization of the ubiquitous AA-platform submotif precedes the formation of the docking transition state and tertiary A-minor hydrogen bond interactions form after the docking transition state. Differences in ion dependences between TL/TLR variants indicated the occurrence of sequence-dependent conformational rearrangements prior to and after the formation of the docking transition state. Nevertheless, varying the junction connecting the TL/TLR produced a common kinetic and ionic effect for all variants, suggesting that the global conformational search and compaction electrostatics are energetically independent from the formation of the tertiary motif contacts. We also found that in vitro-selected variants, despite their similar stability at high Mg2+ concentrations, are considerably less stable than natural variants under near-physiological ionic conditions, and the occurrence of the TL/TLR sequence variants in Nature correlates with their thermodynamic stability in isolation. Overall, our findings are consistent with modular but complex energetic properties of RNA structural motifs and will aid in the eventual quantitative description of RNA folding from its secondary and tertiary structural elements.


Asunto(s)
Conformación de Ácido Nucleico , Motivos de Nucleótidos , Pliegue del ARN , ARN/química , ARN/metabolismo , Imagen Individual de Molécula , Fluorescencia , Cinética , ARN/genética , Estabilidad del ARN , Electricidad Estática , Termodinámica
6.
Proc Natl Acad Sci U S A ; 114(37): E7688-E7696, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28839094

RESUMEN

Decades of study of the architecture and function of structured RNAs have led to the perspective that RNA tertiary structure is modular, made of locally stable domains that retain their structure across RNAs. We formalize a hypothesis inspired by this modularity-that RNA folding thermodynamics and kinetics can be quantitatively predicted from separable energetic contributions of the individual components of a complex RNA. This reconstitution hypothesis considers RNA tertiary folding in terms of ΔGalign, the probability of aligning tertiary contact partners, and ΔGtert, the favorable energetic contribution from the formation of tertiary contacts in an aligned state. This hypothesis predicts that changes in the alignment of tertiary contacts from different connecting helices and junctions (ΔGHJH) or from changes in the electrostatic environment (ΔG+/-) will not affect the energetic perturbation from a mutation in a tertiary contact (ΔΔGtert). Consistent with these predictions, single-molecule FRET measurements of folding of model RNAs revealed constant ΔΔGtert values for mutations in a tertiary contact embedded in different structural contexts and under different electrostatic conditions. The kinetic effects of these mutations provide further support for modular behavior of RNA elements and suggest that tertiary mutations may be used to identify rate-limiting steps and dissect folding and assembly pathways for complex RNAs. Overall, our model and results are foundational for a predictive understanding of RNA folding that will allow manipulation of RNA folding thermodynamics and kinetics. Conversely, the approaches herein can identify cases where an independent, additive model cannot be applied and so require additional investigation.


Asunto(s)
Pliegue del ARN/fisiología , ARN/química , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Teóricos , Conformación de Ácido Nucleico , Física , ARN/metabolismo , ARN Catalítico/química , Termodinámica
7.
Science ; 354(6312): 614-617, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27811274

RESUMEN

Unconventional, special-purpose machines may aid in accelerating the solution of some of the hardest problems in computing, such as large-scale combinatorial optimizations, by exploiting different operating mechanisms than those of standard digital computers. We present a scalable optical processor with electronic feedback that can be realized at large scale with room-temperature technology. Our prototype machine is able to find exact solutions of, or sample good approximate solutions to, a variety of hard instances of Ising problems with up to 100 spins and 10,000 spin-spin connections.

8.
Proc Natl Acad Sci U S A ; 113(34): E4956-65, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27493222

RESUMEN

The past decade has seen a wealth of 3D structural information about complex structured RNAs and identification of functional intermediates. Nevertheless, developing a complete and predictive understanding of the folding and function of these RNAs in biology will require connection of individual rate and equilibrium constants to structural changes that occur in individual folding steps and further relating these steps to the properties and behavior of isolated, simplified systems. To accomplish these goals we used the considerable structural knowledge of the folded, unfolded, and intermediate states of P4-P6 RNA. We enumerated structural states and possible folding transitions and determined rate and equilibrium constants for the transitions between these states using single-molecule FRET with a series of mutant P4-P6 variants. Comparisons with simplified constructs containing an isolated tertiary contact suggest that a given tertiary interaction has a stereotyped rate for breaking that may help identify structural transitions within complex RNAs and simplify the prediction of folding kinetics and thermodynamics for structured RNAs from their parts. The preferred folding pathway involves initial formation of the proximal tertiary contact. However, this preference was only ∼10 fold and could be reversed by a single point mutation, indicating that a model akin to a protein-folding contact order model will not suffice to describe RNA folding. Instead, our results suggest a strong analogy with a modified RNA diffusion-collision model in which tertiary elements within preformed secondary structures collide, with the success of these collisions dependent on whether the tertiary elements are in their rare binding-competent conformations.


Asunto(s)
Motivos de Nucleótidos , Mutación Puntual , ARN/química , Emparejamiento Base , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Moleculares , ARN/genética , Pliegue del ARN , Imagen Individual de Molécula/métodos , Termodinámica
9.
Elife ; 42015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26653856

RESUMEN

The Golgi is decorated with coiled-coil proteins that may extend long distances to help vesicles find their targets. GCC185 is a trans Golgi-associated protein that captures vesicles inbound from late endosomes. Although predicted to be relatively rigid and highly extended, we show that flexibility in a central region is required for GCC185's ability to function in a vesicle tethering cycle. Proximity ligation experiments show that that GCC185's N-and C-termini are within <40 nm of each other on the Golgi. In physiological buffers without fixatives, atomic force microscopy reveals that GCC185 is shorter than predicted, and its flexibility is due to a central bubble that represents local unwinding of specific sequences. Moreover, 85% of the N-termini are splayed, and the splayed N-terminus can capture transport vesicles in vitro. These unexpected features support a model in which GCC185 collapses onto the Golgi surface, perhaps by binding to Rab GTPases, to mediate vesicle tethering.


Asunto(s)
Vesículas Citoplasmáticas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Línea Celular , Proteínas de la Matriz de Golgi , Humanos , Microscopía de Fuerza Atómica , Conformación Proteica
10.
BMC Bioinformatics ; 16: 3, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25591752

RESUMEN

BACKGROUND: Single-molecule techniques have emerged as incisive approaches for addressing a wide range of questions arising in contemporary biological research [Trends Biochem Sci 38:30-37, 2013; Nat Rev Genet 14:9-22, 2013; Curr Opin Struct Biol 2014, 28C:112-121; Annu Rev Biophys 43:19-39, 2014]. The analysis and interpretation of raw single-molecule data benefits greatly from the ongoing development of sophisticated statistical analysis tools that enable accurate inference at the low signal-to-noise ratios frequently associated with these measurements. While a number of groups have released analysis toolkits as open source software [J Phys Chem B 114:5386-5403, 2010; Biophys J 79:1915-1927, 2000; Biophys J 91:1941-1951, 2006; Biophys J 79:1928-1944, 2000; Biophys J 86:4015-4029, 2004; Biophys J 97:3196-3205, 2009; PLoS One 7:e30024, 2012; BMC Bioinformatics 288 11(8):S2, 2010; Biophys J 106:1327-1337, 2014; Proc Int Conf Mach Learn 28:361-369, 2013], it remains difficult to compare analysis for experiments performed in different labs due to a lack of standardization. RESULTS: Here we propose a standardized single-molecule dataset (SMD) file format. SMD is designed to accommodate a wide variety of computer programming languages, single-molecule techniques, and analysis strategies. To facilitate adoption of this format we have made two existing data analysis packages that are used for single-molecule analysis compatible with this format. CONCLUSION: Adoption of a common, standard data file format for sharing raw single-molecule data and analysis outcomes is a critical step for the emerging and powerful single-molecule field, which will benefit both sophisticated users and non-specialists by allowing standardized, transparent, and reproducible analysis practices.


Asunto(s)
Fenómenos Fisiológicos Celulares , Biología Computacional/métodos , Programas Informáticos , Conjuntos de Datos como Asunto , Humanos , Cinética , Microscopía
11.
Phys Rev Lett ; 111(20): 203002, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24289680

RESUMEN

We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.

12.
Opt Express ; 21(15): 18371-86, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23938709

RESUMEN

We present squeezing and anti-squeezing spectra of the output from a degenerate optical parametric oscillator (OPO) network arranged in different coherent quantum feedback configurations. One OPO serves as a quantum plant, the other as a quantum controller. The addition of coherent feedback enables shaping of the output squeezing spectrum of the plant, and is found to be capable of pushing the frequency of maximum squeezing away from the optical driving frequency and broadening the spectrum over a wider frequency band. The experimental results are in excellent agreement with the developed theory, and illustrate the use of coherent quantum feedback to engineer the quantum-optical properties of the plant OPO output.


Asunto(s)
Modelos Teóricos , Oscilometría/instrumentación , Teoría Cuántica , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
13.
Phys Rev Lett ; 109(17): 173602, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23215186

RESUMEN

We model the cooling of open optical and optomechanical resonators via optical feedback in the linear quadratic Gaussian setting of stochastic control theory. We show that coherent feedback control schemes, in which the resonator is embedded in an interferometer to achieve all-optical feedback, can outperform the best possible linear quadratic Gaussian measurement-based schemes in the quantum regime of low steady-state excitation number. Such performance gains are attributed to the coherent controller's ability to process noncommuting output field quadratures simultaneously without loss of fidelity, and may provide important clues for the design of coherent feedback schemes for more general problems of nonlinear and robust control.

14.
Philos Trans A Math Phys Eng Sci ; 370(1979): 5270-90, 2012 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-23091208

RESUMEN

Following the simple observation that the interconnection of a set of quantum optical input-output devices can be specified using structural mode VHSIC hardware description language, we demonstrate a computer-aided schematic capture workflow for modelling and simulating multi-component photonic circuits. We describe an algorithm for parsing circuit descriptions to derive quantum equations of motion, illustrate our approach using simple examples based on linear and cavity-nonlinear optical components, and demonstrate a computational approach to hierarchical model reduction.

15.
PLoS One ; 7(2): e30024, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22363412

RESUMEN

Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination of single molecule data and transparency in the analysis of reported data.


Asunto(s)
Sistemas de Administración de Bases de Datos , Investigación , Programas Informáticos , Algoritmos , Análisis por Conglomerados , Simulación por Computador , Transferencia Resonante de Energía de Fluorescencia , Cadenas de Markov , Fotoblanqueo
16.
Opt Express ; 19(24): 24468-82, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22109474

RESUMEN

Broadband homodyne detection of the light transmitted by a Fabry-Perot cavity containing a strongly-coupled (133)Cs atom is used to probe the dynamic optical response in a regime where semiclassical theory predicts bistability but strong quantum corrections should apply. While quantum fluctuations destabilize true equilibrium bistability, our observations confirm the existence of metastable states with finite lifetimes and a hysteretic response is apparent when the optical drive is modulated on comparable timescales. Our experiment elucidates remnant semiclassical behavior in the attojoule (~10 photon) regime of single-atom cavity QED, of potential significance for ultra-low power photonic signal processing.


Asunto(s)
Interferometría/instrumentación , Modelos Teóricos , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
17.
Opt Express ; 19(7): 6478-86, 2011 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-21451676

RESUMEN

We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500 pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23 aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.


Asunto(s)
Diseño Asistido por Computadora , Rayos Láser , Modelos Teóricos , Procesamiento de Señales Asistido por Computador/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
18.
Phys Rev Lett ; 105(4): 040502, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20867826

RESUMEN

We propose an approach to quantum error correction based on coding and continuous syndrome readout via scattering of coherent probe fields, in which the usual steps of measurement and discrete restoration are replaced by direct physical processing of the probe beams and coherent feedback to the register qubits. Our approach is well matched to physical implementations that feature solid-state qubits embedded in planar electromagnetic circuits, providing an autonomous and "on-chip" quantum memory design requiring no external clocking or control logic.

19.
Biophys J ; 99(1): 313-22, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20655860

RESUMEN

We derive the statistics of the signals generated by shape fluctuations of large molecules studied by feedback tracking microscopy. We account for the influence of intramolecular dynamics on the response of the tracking system and derive a general expression for the fluorescence autocorrelation function that applies when those dynamics are linear. We show that in comparison to traditional fluorescence correlation spectroscopy, tracking provides enhanced sensitivity to translational diffusion, molecular size, heterogeneity, and long-timescale decays. We demonstrate our approach using a three-dimensional tracking microscope to study genomic lambda-phage DNA molecules with various fluorescence label configurations.


Asunto(s)
Microscopía/métodos , Espectrometría de Fluorescencia/métodos , Bacteriófago lambda , Secuencia de Bases , ADN Viral/química , ADN Viral/genética , ADN Viral/metabolismo , Colorantes Fluorescentes/metabolismo , Modelos Lineales , Conformación Molecular , Movimiento , Fotones
20.
J Am Chem Soc ; 131(49): 17901-7, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19911791

RESUMEN

We studied the dynamics of single freely diffusing fluorescence-labeled double-stranded lambda-phage DNA molecules using dual-color 3-dimensional feedback tracking microscopy and intramolecular fluorescence correlation spectroscopy. Our technique is independently sensitive to the molecule's diffusion coefficient D and radius of gyration R(g) and is concentration insensitive, providing greater precision for characterizing the molecule's intramolecular motion than other methods. We measured D = 0.80 +/- 0.05 microm(2)/s and R(g) approximately 420 nm, consistent with the Kirkwood-Riseman prediction for a flexible polymer with strong hydrodynamic interactions (HI), but we find the statistics of intramolecular motion inconsistent with the Zimm model for such a polymer. We address a dispute in the experimental literature, finding that previous measurements on double-stranded DNA likely lacked the sensitivity to distinguish between the Zimm model and the HI-free Rouse model. Finally, we observe fluorescence fluctuations with a correlation time of over 2 s that cannot be explained by either model and propose that they may be signatures of excluded volume interactions.


Asunto(s)
ADN Viral/química , Polímeros/química , Bacteriófago lambda/química , Difusión , Fluorescencia , Imagenología Tridimensional , Microscopía , Microscopía Fluorescente , Modelos Moleculares , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...